
font installation > taco hoekwater

83

Font installation example: IBM Plex
Taco Hoekwater

Installing and using a new font family for use with ConTEXt is not all
that hard, but it can be a bit daunting for an inexperienced user. This
article shows an example using the free font family ‘IBM Plex’.

1. Installation
Actual installation of a font is by far the simplest part of this process.
If you want to use the font with ConTEXt exclusively, just copy all the font files (otf
or ttf) into the fonts/data directory below texmf-fonts in your installation. Then
update the ConTEXt filename database:

> mtxrun --generate

If you also want to use the font family in your operating system, then use the normal
procedure for installing new fonts for your system. You could skip the previous
step in this case since system fonts are always found independent of the filename
database, but I find it useful to have all my ConTEXt fonts somewhere within the
distribution. It means they can easily be found in backups, et cetera. So, I tend to
do both.
Regardless, next you probably want to update the ConTEXt font name database:

> mtxrun --script fonts --reload

This can take a while, depending on how many fonts and font directories you have,
but it should complete eventually without any errors. If you do get errors in this
stage, then you should ask for advice on the mailing list, as it will be something odd
that cannot be predicted by me.

At this point it makes sense to make sure that everything is ok. That means asking
mtxrun to produce the list of fonts, and checking that your new font file(s) are
actually mentioned in its output. You could run

> mtxrun --script fonts --list --all

but the output from that can be huge. If you know (part of) the name of your font
family, it is better to limit the output to just the fonts matching that name. In our
example case, I am sure that the string Plex will appear in all font entries (as it is
part of the file names), and also I know that I do not have a whole host of other fonts
that would match that string. So:

> mtxrun --script fonts --list --all --pattern=Plex

83 83

83 83

contextgroup > context meeting 2018

84

resolvers | trees | analyzing 'home:texmf'

identifier familyname fontname filename subfont instances

ibmplexmono ibmplexmono ibmplexmono IBMPlexMono-Regular.otf
ibmplexmonobold ibmplexmono ibmplexmonobold IBMPlexMono-Bold.otf
ibmplexmonobolditalic ibmplexmono ibmplexmonobolditalic IBMPlexMono-BoldItalic.otf
ibmplexmonoextralight ibmplexmono ibmplexmonoextralight IBMPlexMono-ExtraLight.otf
ibmplexmonoextralightitalic ibmplexmono ibmplexmonoextralightitalic IBMPlexMono-ExtraLightItalic.otf
ibmplexmonoitalic ibmplexmono ibmplexmonoitalic IBMPlexMono-Italic.otf
ibmplexmonolight ibmplexmono ibmplexmonolight IBMPlexMono-Light.otf
ibmplexmonolightitalic ibmplexmono ibmplexmonolightitalic IBMPlexMono-LightItalic.otf
ibmplexmonomedium ibmplexmono ibmplexmonomedium IBMPlexMono-Medium.otf
ibmplexmonomediumitalic ibmplexmono ibmplexmonomediumitalic IBMPlexMono-MediumItalic.otf
ibmplexmononormal ibmplexmono ibmplexmonoitalic IBMPlexMono-Italic.otf
ibmplexmonoregular ibmplexmono ibmplexmonoextralight IBMPlexMono-ExtraLight.otf
ibmplexmonosemibold ibmplexmono ibmplexmonosemibold IBMPlexMono-SemiBold.otf
ibmplexmonosemibolditalic ibmplexmono ibmplexmonosemibolditalic IBMPlexMono-SemiBoldItalic.otf
ibmplexmonotext ibmplexmono ibmplexmonotext IBMPlexMono-Text.otf
ibmplexmonotextitalic ibmplexmono ibmplexmonotextitalic IBMPlexMono-TextItalic.otf
ibmplexmonothin ibmplexmono ibmplexmonothin IBMPlexMono-Thin.otf
ibmplexmonothinitalic ibmplexmono ibmplexmonothinitalic IBMPlexMono-ThinItalic.otf
ibmplexsans ibmplexsans ibmplexsans IBMPlexSans-Regular.otf
ibmplexsansbold ibmplexsans ibmplexsansbold IBMPlexSans-Bold.otf
ibmplexsansbolditalic ibmplexsans ibmplexsansbolditalic IBMPlexSans-BoldItalic.otf
ibmplexsanscond ibmplexsanscondensed ibmplexsanscond IBMPlexSansCondensed-Regular.otf
ibmplexsanscondbold ibmplexsanscondensed ibmplexsanscondbold IBMPlexSansCondensed-Bold.otf
ibmplexsanscondbolditalic ibmplexsanscondensed ibmplexsanscondbolditalic IBMPlexSansCondensed-BoldItalic.otf
ibmplexsanscondensed ibmplexsanscondensed ibmplexsanscond IBMPlexSansCondensed-Regular.otf
ibmplexsanscondensedbold ibmplexsanscondensed ibmplexsanscondbold IBMPlexSansCondensed-Bold.otf
ibmplexsanscondensedbolditalic ibmplexsanscondensed ibmplexsanscondbolditalic IBMPlexSansCondensed-BoldItalic.otf
ibmplexsanscondensedextralight ibmplexsanscondensed ibmplexsanscondextralight IBMPlexSansCondensed-ExtraLight.otf
ibmplexsanscondensedextralightitalic ibmplexsanscondensed ibmplexsanscondextralightitalic IBMPlexSansCondensed-ExtraLightItalic.otf
ibmplexsanscondenseditalic ibmplexsanscondensed ibmplexsansconditalic IBMPlexSansCondensed-Italic.otf
ibmplexsanscondensedlight ibmplexsanscondensed ibmplexsanscondlight IBMPlexSansCondensed-Light.otf
ibmplexsanscondensedlightitalic ibmplexsanscondensed ibmplexsanscondlightitalic IBMPlexSansCondensed-LightItalic.otf
ibmplexsanscondensedmedium ibmplexsanscondensed ibmplexsanscondmedium IBMPlexSansCondensed-Medium.otf
ibmplexsanscondensedmediumitalic ibmplexsanscondensed ibmplexsanscondmediumitalic IBMPlexSansCondensed-MediumItalic.otf
ibmplexsanscondensednormal ibmplexsanscondensed ibmplexsansconditalic IBMPlexSansCondensed-Italic.otf
ibmplexsanscondensedregular ibmplexsanscondensed ibmplexsanscondextralight IBMPlexSansCondensed-ExtraLight.otf
ibmplexsanscondensedsemibold ibmplexsanscondensed ibmplexsanscondsemibold IBMPlexSansCondensed-SemiBold.otf
ibmplexsanscondensedsemibolditalic ibmplexsanscondensed ibmplexsanscondsemibolditalic IBMPlexSansCondensed-SemiBoldItalic.otf
ibmplexsanscondensedtext ibmplexsanscondensed ibmplexsanscondtext IBMPlexSansCondensed-Text.otf
ibmplexsanscondensedtextitalic ibmplexsanscondensed ibmplexsanscondtextitalic IBMPlexSansCondensed-TextItalic.otf
ibmplexsanscondensedthin ibmplexsanscondensed ibmplexsanscondthin IBMPlexSansCondensed-Thin.otf
ibmplexsanscondensedthinitalic ibmplexsanscondensed ibmplexsanscondthinitalic IBMPlexSansCondensed-ThinItalic.otf
ibmplexsanscondextralight ibmplexsanscondensed ibmplexsanscondextralight IBMPlexSansCondensed-ExtraLight.otf
ibmplexsanscondextralightitalic ibmplexsanscondensed ibmplexsanscondextralightitalic IBMPlexSansCondensed-ExtraLightItalic.otf
ibmplexsansconditalic ibmplexsanscondensed ibmplexsansconditalic IBMPlexSansCondensed-Italic.otf
ibmplexsanscondlight ibmplexsanscondensed ibmplexsanscondlight IBMPlexSansCondensed-Light.otf
ibmplexsanscondlightitalic ibmplexsanscondensed ibmplexsanscondlightitalic IBMPlexSansCondensed-LightItalic.otf
ibmplexsanscondmedium ibmplexsanscondensed ibmplexsanscondmedium IBMPlexSansCondensed-Medium.otf
ibmplexsanscondmediumitalic ibmplexsanscondensed ibmplexsanscondmediumitalic IBMPlexSansCondensed-MediumItalic.otf
ibmplexsanscondsemibold ibmplexsanscondensed ibmplexsanscondsemibold IBMPlexSansCondensed-SemiBold.otf
ibmplexsanscondsemibolditalic ibmplexsanscondensed ibmplexsanscondsemibolditalic IBMPlexSansCondensed-SemiBoldItalic.otf
ibmplexsanscondtext ibmplexsanscondensed ibmplexsanscondtext IBMPlexSansCondensed-Text.otf
ibmplexsanscondtextitalic ibmplexsanscondensed ibmplexsanscondtextitalic IBMPlexSansCondensed-TextItalic.otf
ibmplexsanscondthin ibmplexsanscondensed ibmplexsanscondthin IBMPlexSansCondensed-Thin.otf
ibmplexsanscondthinitalic ibmplexsanscondensed ibmplexsanscondthinitalic IBMPlexSansCondensed-ThinItalic.otf
ibmplexsansextralight ibmplexsans ibmplexsansextralight IBMPlexSans-ExtraLight.otf
ibmplexsansextralightitalic ibmplexsans ibmplexsansextralightitalic IBMPlexSans-ExtraLightItalic.otf
ibmplexsanshebrew ibmplexsanshebrew ibmplexsanshebrew IBMPlexSansHebrew-Regular.otf
ibmplexsanshebrewbold ibmplexsanshebrew ibmplexsanshebrewbold IBMPlexSansHebrew-Bold.otf
ibmplexsanshebrewextralight ibmplexsanshebrew ibmplexsanshebrewextralight IBMPlexSansHebrew-ExtraLight.otf
ibmplexsanshebrewlight ibmplexsanshebrew ibmplexsanshebrewlight IBMPlexSansHebrew-Light.otf
ibmplexsanshebrewmedium ibmplexsanshebrew ibmplexsanshebrewmedium IBMPlexSansHebrew-Medium.otf
ibmplexsanshebrewnormal ibmplexsanshebrew ibmplexsanshebrew IBMPlexSansHebrew-Regular.otf
ibmplexsanshebrewregular ibmplexsanshebrew ibmplexsanshebrewextralight IBMPlexSansHebrew-ExtraLight.otf
ibmplexsanshebrewsemibold ibmplexsanshebrew ibmplexsanshebrewsemibold IBMPlexSansHebrew-SemiBold.otf
ibmplexsanshebrewtext ibmplexsanshebrew ibmplexsanshebrewtext IBMPlexSansHebrew-Text.otf
ibmplexsanshebrewthin ibmplexsanshebrew ibmplexsanshebrewthin IBMPlexSansHebrew-Thin.otf
ibmplexsansitalic ibmplexsans ibmplexsansitalic IBMPlexSans-Italic.otf
ibmplexsanslight ibmplexsans ibmplexsanslight IBMPlexSans-Light.otf
ibmplexsanslightitalic ibmplexsans ibmplexsanslightitalic IBMPlexSans-LightItalic.otf
ibmplexsansmedium ibmplexsans ibmplexsansmedium IBMPlexSans-Medium.otf
ibmplexsansmediumitalic ibmplexsans ibmplexsansmediumitalic IBMPlexSans-MediumItalic.otf
ibmplexsansnormal ibmplexsans ibmplexsansitalic IBMPlexSans-Italic.otf
ibmplexsansregular ibmplexsans ibmplexsansextralight IBMPlexSans-ExtraLight.otf
ibmplexsanssemibold ibmplexsans ibmplexsanssemibold IBMPlexSans-SemiBold.otf
ibmplexsanssemibolditalic ibmplexsans ibmplexsanssemibolditalic IBMPlexSans-SemiBoldItalic.otf
ibmplexsanstext ibmplexsans ibmplexsanstext IBMPlexSans-Text.otf
ibmplexsanstextitalic ibmplexsans ibmplexsanstextitalic IBMPlexSans-TextItalic.otf
ibmplexsansthin ibmplexsans ibmplexsansthin IBMPlexSans-Thin.otf
ibmplexsansthinitalic ibmplexsans ibmplexsansthinitalic IBMPlexSans-ThinItalic.otf
ibmplexserif ibmplexserif ibmplexserif IBMPlexSerif-Regular.otf
ibmplexserifbold ibmplexserif ibmplexserifbold IBMPlexSerif-Bold.otf
ibmplexserifbolditalic ibmplexserif ibmplexserifbolditalic IBMPlexSerif-BoldItalic.otf
ibmplexserifextralight ibmplexserif ibmplexserifextralight IBMPlexSerif-ExtraLight.otf
ibmplexserifextralightitalic ibmplexserif ibmplexserifextralightitalic IBMPlexSerif-ExtraLightItalic.otf
ibmplexserifitalic ibmplexserif ibmplexserifitalic IBMPlexSerif-Italic.otf
ibmplexseriflight ibmplexserif ibmplexseriflight IBMPlexSerif-Light.otf
ibmplexseriflightitalic ibmplexserif ibmplexseriflightitalic IBMPlexSerif-LightItalic.otf
ibmplexserifmedium ibmplexserif ibmplexserifmedium IBMPlexSerif-Medium.otf
ibmplexserifmediumitalic ibmplexserif ibmplexserifmediumitalic IBMPlexSerif-MediumItalic.otf
ibmplexserifnormal ibmplexserif ibmplexserifitalic IBMPlexSerif-Italic.otf
ibmplexserifregular ibmplexserif ibmplexserifextralight IBMPlexSerif-ExtraLight.otf
ibmplexserifsemibold ibmplexserif ibmplexserifsemibold IBMPlexSerif-SemiBold.otf
ibmplexserifsemibolditalic ibmplexserif ibmplexserifsemibolditalic IBMPlexSerif-SemiBoldItalic.otf
ibmplexseriftext ibmplexserif ibmplexseriftext IBMPlexSerif-Text.otf
ibmplexseriftextitalic ibmplexserif ibmplexseriftextitalic IBMPlexSerif-TextItalic.otf
ibmplexserifthin ibmplexserif ibmplexserifthin IBMPlexSerif-Thin.otf
ibmplexserifthinitalic ibmplexserif ibmplexserifthinitalic IBMPlexSerif-ThinItalic.otf

Figure 1. Output of mtxrun --script fonts --list --all --pattern=Plex

84 84

84 84

font installation > taco hoekwater

85

Do not forget to add --all in this last command line, otherwise you will only get a
single result back, instead of lines for all the fonts thatmatch the pattern. In figure 1
you can see the output I get (in a teeny weeny monospaced font, otherwise it will
not fit the article paper). Make sure all the font files you have installed appear
somewhere in the output. If not, there is probably something odd about that font or
its file permissions. Again, it is probably best to ask the mailing list for advice.

2. Understanding the mtxrun output
The output from mtxrun is formatted in columns. The meanings of the columns is
as follows:

1. identifier
This is one of the internal identifiers used within ConTEXt, used if you specify
a font using the spec: prefix. If you look closely at the output list, you can
see that there can be more than one line per font file, with the only differ-
ence being the identifier. This is because spec: attempts to convert the
rather arbitrary font names to some semblance of order. My experiences
with using the spec: identifier are not so good, and it is mostly helpful for
higher-level modules like selectfont.

2. familyname
This is a sanitized version of the familyname entry within the separate font
files. This is also mostly helpful for selectfont, and we can safely ignore it.

3. fontname
This is the font identifier that is used with ConTEXt if you specify a font using
the name: prefix. This is my preferred method to specify fonts. It does not
always work, though and that is where the next column comes in handy.

4. filename
This is the font identifier that is used with ConTEXt if you specify a font using
the file: prefix. Useful mostly if you have different versions of fonts with
identical names in different font files. I use this for fonts that are in my Con-
TEXt distribution but that are also installed in my operating system, just to
make sure that I have the right one in case one of them changes after an
update.

5. subfont
For fonts stored in Truetype font collections (.ttc files), this gives the used
font index within the collection. In ConTEXt, you access such fonts by ap-
pending (<index>) to the file name if you are using the file: prefix.

6. instances
For variable fonts, this lists the known instances of the font.

Incidentally, the values returned in the first columns can also be used as arguments
to the various sub-options for the --list command.

85 85

85 85

contextgroup > context meeting 2018

86

3. Testing a few font instances
At this point, I usually opt for a bit of paranoia. I suggest you create a small test file:

\startTEXpage
\definedfont[name:ibmplexmono] \input knuth
\stopTEXpage

Do a visual inspection of the generated page to make sure it matches what you
expect, and also check the loaded fonts line from the run’s output, just in case.
The output line should look something like this:

mkiv lua stats > loaded fonts: 3 files: ibmplexmono-regular.otf,
latinmodern-math.otf, lmroman12-regular.otf

Nowadays, it seems that ConTEXt always preloads some fonts that are then not
actually used (It needs a math font to initialize some of the internals, and since no
explicit math font is defined yet it loads latinmodern-math.otf by default. Prob-
ably something similar makes it load lmroman12-regular.otf) but the important
one is ibmplexmono-regular.otf, of course.

If you want, you can test all the new fonts separately, but usually if any database
entry is ok, they are all ok.

4. Font repertoire
When you get a new font, I assume you have checked that the included glyphs are
what you need for your texts. But you did that test on the company website, and it
makes sense to do an extra test inside ConTEXt, just in case. For a quick latin test,
you can use \showfont, but it is better to get the full list.

\usemodule[fnt-10]
\starttext
\ShowCompleteFont{name:ibmplexmono}{20pt}{1}
\stoptext

This will produce a pdf that lists each and every glyph in the font in a table that
contains the glyph’s unicode slot, the visual, the glyphnumber in the font, the glyph’s
actual name (if present), the glyph’s expected name according to the Adobe Glyph
list (if known) and optionally a list of ConTEXt command mappings.

Again, you could test all fonts, but usually one per family is enough. It is not unusual
that there are differences between families, even if fonts within a family generally
all have the same repertoire. In this case for example, the ibmplexsans has Cyrillic
and greek but no Hebrew (in fact the ibmplexsans is the only family with greek), and
ibmplexsanshebrew has Hebrew but not Cyrillic.

86 86

86 86

font installation > taco hoekwater

87

5. Feature discovery
Since this is an OpenType font set, there are probably features that can be turned
on and off. To get a list of the features within a font, you can ask mtxrun:

mtxrun --script fonts --list --info ibmplexsans

A small part of that output looks like this:

mtx-fonts | gpos features:
mtx-fonts |
mtx-fonts | feature script languages
mtx-fonts |
mtx-fonts | kern cyrl dflt
mtx-fonts | dflt dflt
mtx-fonts | grek dflt
mtx-fonts | latn dflt
mtx-fonts | mark cyrl dflt
mtx-fonts | dflt dflt
mtx-fonts | grek dflt
mtx-fonts | latn dflt
mtx-fonts |
mtx-fonts | gsub features:
mtx-fonts |
mtx-fonts | feature script languages
mtx-fonts |
mtx-fonts | aalt cyrl dflt
mtx-fonts | dflt dflt
mtx-fonts | grek dflt
mtx-fonts | latn dflt
...

Which tells us that there are two positioning features (gpos): kerning (kern) and
accent placement (mark). This is fairly standard, and both features are turned on by
default in ConTEXt so there is no need pay special attention to these.

We also see here that this font defines four scripts: Cyrillic (cyrl), Default (dflt),
Greek (grek) and Latin (latn). There could potentially be more scripts that these
features do not apply to, but that is highly unlikely in this case. The fact that
languages is dflt simply means that the feature is to be applied when the language
is set to default. In this font, that is the case for all features including the substitution
(gsub) features, but it is not unusual to see gsub features that only apply to specific
combinations of script and language. TheHebrew fonts in this example family define
an extra feature locl for the language iwr in script hebr.

Off-screen, I ran this command for a number of different fonts, and it seems that
they all have roughly the same feature set in this case, even across families. There

87 87

87 87

contextgroup > context meeting 2018

88

are a few differences: only the sans fonts have greek, so they are the only ones
that define the grek script. Only the Hebrew fonts define the hebr script. And the
monospaced fonts do not have either kern or liga.

kern Kerning mark Mark positioning

aalt Access all alternates ccmp Glyphcomposition/decomposition
dnom Denominators frac Fractions
liga Standard ligatures numr Numerators
ordn Ordinals salt Stylistic alternates
sinf Scientific inferiors ss01 Stylistic set 1
ss02 Stylistic set 2 ss03 Stylistic set 3
ss04 Stylistic set 4 ss05 Stylistic set 5
sups Superscript zero Slashed zero

What this does not tell you is exactly what glyphs are affected by what feature.
I know of no easy way to get that information, but presumably this information can
be attained from the font source. Either that, or you will have to experiment …

6. Creating typescripts
With all of the preliminary work done, it is time to create an initial version of the
typescripts. For this, I usually work in a single document, with the typescripts-to-
be defined in the setup section followed by one or more \usetypescript lines, and
the body of the document containing nothing but repetitions of

\showbodyfont[typescriptname,12pt]

A full example will follow later.

For now, we need to deal with something else. Normally you set up the typescripts
by taking one of each of the font families, and connecting them to one of the Sans,
Serif, or Mono typefaces. In a traditional four-font font family, this is a simple
process. But ConTEXt’s roots in traditional TEX are quite obvious in this area: while
there is support for three font styles (roman, italic, and slanted), there is only support
for two weights (normal and bold). Modern font families nowadays typically have
only two styles, but up to nine weights! ConTEXt also has support for a separate
‘smallcaps’ font, which is hardly ever used these days, instead handling caps and
small caps as an opentype feature.

The simplest way out of this (at least, unless ConTEXt is extended sometime in the
future) is to divide your font family into as many four-font subfamilies as needed,
and create separate typescripts for each.

Let’s have a look at the ibmplexmono font family. It has eight weights (thin, extra-
light, light, normal, text, medium, semibold, and bold), each with a roman and an
italic style. Weight names are not always easy to interpret so sometimes matching

88 88

88 88

font installation > taco hoekwater

89

a ‘normal’ with a ‘bold’ can be trial and error, but in this case the combinations are
fairly clear. Four separate typescripts are needed and the resulting test file looks
like this:

\starttypescript [mono] [ibmplex-thin]
\definefontsynonym[Mono] [name:ibmplexmonothin]
\definefontsynonym[MonoItalic] [name:ibmplexmonothinitalic]
\definefontsynonym[MonoBold] [name:ibmplexmonotext]
\definefontsynonym[MonoBoldItalic] [name:ibmplexmonotextitalic]

\stoptypescript

\starttypescript [mono] [ibmplex-extralight]
\definefontsynonym[Mono] [name:ibmplexmonoextralight]
\definefontsynonym[MonoItalic] [name:ibmplexmonoextralightitalic]
\definefontsynonym[MonoBold] [name:ibmplexmonomedium]
\definefontsynonym[MonoBoldItalic] [name:ibmplexmonomediumitalic]

\stoptypescript

\starttypescript [mono] [ibmplex-light]
\definefontsynonym[Mono] [name:ibmplexmonolight]
\definefontsynonym[MonoItalic] [name:ibmplexmonolightitalic]
\definefontsynonym[MonoBold] [name:ibmplexmonosemibold]
\definefontsynonym[MonoBoldItalic][name:ibmplexmonosemibolditalic]

\stoptypescript

\starttypescript [mono] [ibmplex]
\definefontsynonym[Mono] [name:ibmplexmono]
\definefontsynonym[MonoItalic] [name:ibmplexmonoitalic]
\definefontsynonym[MonoBold] [name:ibmplexmonobold]
\definefontsynonym[MonoBoldItalic] [name:ibmplexmonobolditalic]

\stoptypescript

\starttypescript [ibmplex-thin,ibmplex-extralight,
ibmplex-light,ibmplex]

\definetypeface [\typescriptone]
[tt] [mono] [\typescriptone] [default]

\stoptypescript

\usetypescript[ibmplex-thin,ibmplex-extralight,
ibmplex-light,ibmplex]

\starttext
\showbodyfont[ibmplex-thin,12pt]
\showbodyfont[ibmplex-extralight,12pt]
\showbodyfont[ibmplex-light,12pt]

89 89

89 89

contextgroup > context meeting 2018

90

\showbodyfont[ibmplex,12pt]
\stoptext

The two arguments [mono] [ibmplex] etcetera in the separate blocks are used by
the third and fourth argument of \definetypeface. For a font family with serifs,
you would use [serif], for a sans-serif family [sans] as the first argument. The
second argument is your choice, but it makes some sense to reuse the names later
on for the actual typescripts as that prevents confusion and allows shortcuts like
using \typescriptone.

After running this file, some of it should look good. Of course all the entries for the
\rm and \ss lines are wrong, but that is to be expected, only the lines for \tt are
really interesting for now.

In each of those, the \tt\tf, \tt\it, \tt\bf, \tt\bi and all of the entries for
\tfXXX should all use the just installed font.

But the ones for the slanted and small caps commands are still wrong. This is where
it makes sense to compensate for the TEX history of ConTEXt font support. In case
someone (or an external macro) uses the \sl, \bs or \sc commands, it is better to
intercept the wrong font.

Normally I solve this by adding three lines to each of the \definefontsynonym
blocks:

\definefontsynonym [MonoSlanted] [MonoItalic]
\definefontsynonym [MonoBoldSlanted][MonoBoldItalic]
\definefontsynonym [MonoCaps] [Mono]

This makes the \sc command fairly useless. If the font actually had a small caps
feature, it would be possible to set that up, by using

\definefontsynonym
[MonoCaps]
[name:ibmplexmono]
[features=smallcaps]

but this font family does not, so that won’t help. Nevertheless, it is still better to see
a non-small capped IBM Plex font with the right weight, than a small capped Latin
Modern Mono in the standard weight.

The next task would be to set up the \definefontsynonym blocks for the other
families. This is very similar to the block for the monospaced family, except that it
makes sense to add [features=default] to all of the \definefontsynonym lines.
And of course the blocks need to start with [sans] or [serif]. Since all the families
have fonts in eight styles, it makes sense to reuse the typescript names for at least
the ibmplexserif and ibmplexsans.

90 90

90 90

font installation > taco hoekwater

91

After all the font definitions have been made, it is possible to fill in the list of
typefaces some more. At least, we can complete the entries for \rm and \ss:

\starttypescript [ibmplex-thin,ibmplex-extralight,
ibmplex-light,ibmplex]

\definetypeface [\typescriptone]
[rm] [serif] [\typescriptone] [default]

\definetypeface [\typescriptone]
[ss] [sans] [\typescriptone] [default]

\definetypeface [\typescriptone]
[tt] [mono] [\typescriptone] [default]

\stoptypescript

I will not add all the listings here, but the final typescript file will appear on the
meeting website.

Generally, the userwill want to have a \definetypeface formath aswell, but finding
a nice match is a bit tricky.

For ibmplexsanscondensed and ibmplexsanshebrew new typescript names should
be invented, if you want those as separate typescripts. Since there is only a
condensed sans-serif, you may not want that one, and instead use the condensed
fonts only for special occasions where the size does not have to be variable, like in
headers and footers.

For uses like that, it may be a good idea to add a number of global \fontsynonyms
to the typescript file, like so:

\definefontsynonym
[SansCondensed]
[name:ibmplexsanscond]
[features=default]

This is not required, but it makes for cleaner use of \definefont.

For the Hebrew fonts, in this case it is better to set them up as fallbacks only, as
explained in the next section.

7. Fallbacks
Let’s step back a bit and deal with the Hebrew fonts. We want to use the Hebrew
font when typesetting Hebrew, but we do not want to loose the ability to typeset
Cyrillic. A goodway to do that is to define theHebrew fonts as fallback for the normal
sans-serif fonts.

In Unicode, the Hebrew block is roughly from uni0590 to uni05FF. Not all of the
code points are filled, and of the filled ones, the IBM Plex fonts may not cover all.
But it is still better than nothing.

91 91

91 91

contextgroup > context meeting 2018

92

We need to define a few font callbacks, here is one:

\definefontfallback
[SansHebrewFallback]
[SansHebrew]
[0x0590-0x05ff]
[check=yes,force=no]

When this is used inside a third argument to a \definefontsynonym line, it tells
ConTEXt that whenever the current font does not have a glyph in the Unicode
range from hexadecimal 0590 up to 05ff, to use the substitute font SansHebrew
instead. I used force=no here, because I expect somehow that the Hebrew block
will eventually be merged into the normal sans font, and this offers some future
proofing: with force=yes, any glyphs in the affected block in the base font would
be permanently ignored.

We actually need two of those. The one from above, and also a version for
SansBoldHebrew. I defined those globally, because they can be reused within the
four different weight typescripts. We will let the italic styles fall back to upright,
because there are no italic versions of the ‘Sans Hebrew’ font.

We need to use the Hebrew font feature for the Hebrew fonts instead of the default,
which is one of the predefined font feature sets in ConTEXt.

Now we have to go back to the four typescript definitions for sans. We need to add
the definition for the SansHebrewXXXX fonts, and adjust the \definefontsynonym
lines. The end result of just one of the four blocks would look like this:

\starttypescript [sans] [ibmplex]
\definefontsynonym

[SansHebrew]
[name:ibmplexsanshebrew] [features=hebrew]

\definefontsynonym
[SansHebrewBold]
[name:ibmplexsanshebrewbold] [features=hebrew]

\definefontsynonym
[Sans]
[name:ibmplexsans]
[features=default, fallbacks=SansHebrewFallback]

\definefontsynonym
[SansItalic]
[name:ibmplexsansitalic]
[features=default, fallbacks=SansHebrewFallback]

\definefontsynonym
[SansBold]
[name:ibmplexsansbold]

92 92

92 92

font installation > taco hoekwater

93

[features=default, fallbacks=SansHebrewBoldFallback]
\definefontsynonym

[SansBoldItalic]
[name:ibmplexsansbolditalic]
[features=default, fallbacks=SansHebrewBoldFallback]

\definefontsynonym [SansSlanted] [SansItalic]
\definefontsynonym [SansBoldSlanted][SansBoldItalic]
\definefontsynonym [SansCaps] [Sans]

\stoptypescript

Now we can write Hebrew as well as Cyrillic using only the simple \ss command.
Do not forget to change the writing direction!

After filling in the other typescript blocks, we are finished with the typescript file!

8. Stylistic alternates and other features
So what about the other features like ss01 and zero? The zero feature is a simple
one to test, because per the definition in the OpenType standard it toggles on the
use of a special kind of zero, like so:

\definedfont[Sans]
{There is a 0 chance of \addff{zero} 0 changes.}

There is a 0 chance of 0 changes.

In this case, it was easiest to use the \addff command, but that will only work for
some specific simple features. Quite often, special features need to use the Lua
based OpenType processor that is set upwith mode=node in a \definefontfeature.

The features that deal with stylistic sets are harder to discover. For this demon-
stration, I looked at the font using a font editor. It turns out that the first two are
used to switch to an ‘italic’ style of certain characters. ss01 does the various ‘a’-
and ‘alpha’-based glyphs and ss02 the ‘g’-based glyphs. Feature ss03 is an alias
for feature zero, features ss04 produces a zero with a dot in the middle, and ss05
changes the appearance of the ß glyph.

\definefontfeature
[mynormal]
[mode=node,ss01=yes,ss02=yes,ss04=yes,ss05=yes]

\definedfont[Sans*default]{There is a 0 chance of changes ß.}

\definedfont[Sans*mynormal]{There is a 0 chance of changes ß.}

93 93

93 93

contextgroup > context meeting 2018

94

There is a 0 chance of changes ß.

There is a 0 chance of changes ß.

The frac feature is supposed to produce inline fractions from ascii input. To find out
what the exact output is, it is best to run a small test:

\definefontfeature
[mynormal]
[mode=node,frac=yes,ss04=yes]

\definedfont[Sans*default]{1/2 1/3 2/3 1/4 2/4 3/4 5/9 20/42}

\definedfont[Sans*mynormal]{1/2 1/3 2/3 1/4 2/4 3/4 5/9 20/42}

1/2 1/3 2/3 1/4 2/4 3/4 5/9 20/42

¹⁄₂ ¹⁄₃ ²⁄₃ ¹⁄₄ ²⁄₄ ³⁄₄ ⁵⁄₉ ²⁰⁄₄₂

As you can see, in this font the coverage is very good. This is because it replaces
all glyphs in the numeric range, first all to their superscript variant, then when it
sees the slash, it switches to the subscript variant. Some fonts implement the frac
feature by converting the input into a ligature, and then coverage depends on how
many ligatures are provided.

Depending on your font, sometimes features may depend on other features. The
font documentation is supposed to help, but if it does not, then sometimes the only
thing to do is to write a test file experimenting with turning all the features on and
off and looking for differences in the output.

Afterword
This article came about because Pavneet Arora asked me for help on how to set up
the IBM Plex family. Then we had the ConTEXt meeting in Sibřina, and the general
consensus was that we preferred the IBM Plex font family over Alwyn New, the font
family that was used thus far to typeset the Context group journal. The three big
advantages of IBM Plex are: improved readability, a larger glyph repertoire, and it
being a freely distributable font.

The Context group has not abandoned Alwyn New. We will keep using that family
for all official communications. But the journal will from now on be typeset in IBM
Plex Sans and Mono.

94 94

94 94

