
contextgroup > context meeting 2019

42

Presentations in XML
Using XML with the simpleslides module
Thomas A. Schmitz

XML has become the de-facto standard for information exchange. It is a highly
versatile and flexible markup language which can be processed in many different
ways. ConTEXt MkIV has sophisticated and powerful tools to process XML. This
article will show how you can write presentations in XML and process them in
ConTEXt. It is meant for beginners and intermediate users.

Using XML

1. Basic Principles of XML
XML has become a standard for information ex-
change. It offers a good compromise: it can
be read and written by humans, but it is also
parsable by numerous applications. It is a fairly
simple format; its first principles can be de-
scribed in just a few sentences:

1. XML documents consist of content and
markup; if you have already mastered a
markup language (such as TEX), this should
not be too difficult to grasp.

2. As a markup language, XML needs to reserve
a few characters to distinguish markup from
text. In XML, there are only three types of
special characters: angle brackets < >delimit
tags, the characters & and ; delimit character
entities, and the quotation marks " and ' are
used to quote attribute values.

3. XML documents are (at least in principle) self-
contained: they describe their own structure,
i.e., they define all allowed tags and their al-
lowed content.

4. XML documents are characterized by a tree-
structure: there is exactly one “root” element;
all elements are delimited by opening and
closing tags.

5. Every opening tag has a corresponding closing
tag; elements must be nested in a proper
order, and they must not overlap.

Unlike many other markup languages, XML de-
fines only these syntactical or structural rules, but
no semantic ones: there are no predefined tags
(and almost no predefined entities). The advan-
tage of this is that you can define your own tags
and adapt them to the demands of your docu-
ment. The drawback is that you must define your
own tags and adapt them to the demands of your
document. All this means that you have to think
carefully about the structure of the information
your document needs to hold and communicate.
XML encourages you to separate the content from
the appearance because it forces you to develop
your own structure.1

1 I say “encourages,” because it is still possible to write hor-
rible documents in XML and confuse visual appearance with
structure.

42 42

42 42

presentations in XML > thomas a. schmitz

43

2. Should You Use XML?
XML presents a number of advantages, both be-
cause of its qualities and because of the many
ways it is being used by people:

1. It is extremely adaptable and can be used
in many different ways, for a number of pur-
poses. It is equally suitable for very struc-
tured data which is deeply nested and for
‘mixed’ content which holds lots of text.

2. As said above, it encourages the separation
of content and presentation, thus helping you
write ‘clean’ code.

3. XML can be read and processed by a huge
number of applications. There are a variety
of parsers and converters available for almost
every programming language you can imag-
ine. Further there are extremely powerful li-
braries and toolchains which can help you set
up a workflow based on XML.

4. XML provides a number of output options.
With a proper toolchain, it can produce print-
able output (e.g., PDF), or it can be displayed
on the web.

5. XML provides a good compromise between
human readability and density of information.

6. One could argue that its somewhat verbose
syntax is an advantage: the explicit closing of
tags makes it easier to parse and read than
TEX syntax with its closing braces which will
not tell you exactly which group they close.

These are powerful arguments for asking yourself
whether you should use XML as input format for
your files. However, XML is not a magic bullet,
and it is not per se “better” than TEX input. There
are a number of drawbacks which you should not
neglect when you use ConTEXt:

1. You need to learn the syntax of another lan-
guage;

2. XML adds another layer between your source
and your output; you will have to map XML

elements to appropriate ConTEXt commands;

3. it makes writing macros somewhat cumber-
some: you always have to think twice about
appropriate syntax and rules, once to express
your intention in XML, and then to map your
XML structure to ConTEXt.

4. It can become especially annoying when
something does not work: it makes debugging
more difficult because the translation from
XML to TEX creates an additional source of
problems.

Overall, I would suggest that you make an in-
formed decision. If you mostly write one-off doc-
uments which usually differ in structure, style and
format, and if all you want from your documents
is printed or PDF output, XML is most probably
not for you. XML may be useful if:

– your documents have a predictable, repetitive
structure;

– this structure is typically translated into a
repetitive style;

– you want several output formats from your
source;

– there is a chance that you may wish to reuse
the content of your documents in other ways
and with other applications.

Using XML with CONTEXT

3. The Editor
Whenever people hear about XML, one of the
first questions that arises is “what editor should
I use?” There is no universal answer to this. Of
course it depends on a number of factors: your
operating system, the type of XML document you
are authoring (do they primarily consist of mixed
content and text, or are they typically some sort
of database?), the way you typically work with
documents (do you prefer to have the XML syntax

43 43

43 43

contextgroup > context meeting 2019

44

hidden while you edit your documents, or would
you prefer to have tags and attributes in plain
sight?).

There is a number of specialized tools available
that will facilitate editing XML; one of the most
well-known applications is Oxygen, a commercial
tool which runs on most platforms.2 Most gen-
eral-purpose editors have an XML mode which
will provide at least syntax highlighting. The so-
lution I prefer is pretty basic: Emacs is my editor
of choice, and it has a nice XML editing mode,
called nxml-mode.3 It offers syntax highlighting,
some basic functionality such as indenting, it val-
idates XML on-the-fly, and if you have a proper
schema connected with your XML document, it
will validate your input against this schema and
offer code completion. It is difficult to make a
general recommendation. You should simply try
out different tools and see what feels comfort-
able for you.

4. XML in CONTEXT
Processing XML in ConTEXt has been possible for
some time now. However, with the advent of
ConTEXt MkIV, based on LuaTEX, XML support has
improved dramatically. The main difference is
that XML processing in MkII was by and large
a streaming parser, which meant that elements
were processed exactly in the order in which
ConTEXt read them. You could of course reuse
the content of elements, but this was a pretty
difficult task that involved some extra steps. In
MkIV, the content of an XML file is parsed with
Lua, it is translated into a Lua table, and retained
in memory. This means that you have access to
every element of your XML file at every moment of
typesetting. This makes it much easier to reuse,
select, manipulate, filter, or test your input. It is
now possible to write macros which will process
the nth element of type <x> or an element of type

2 See http://www.oxygenxml.com.
3 See http://www.thaiopensource.com/nxml-mode.

<x> only if it contains the string z, or to compare
the content of elements to predefined values and
then do something special with it, depending on
the output of the tests. All of this would have
been extremely cumbersome or impossible in
MkII; in MkIV, you don’t have to be a program-
ming genius to do that. Hence, in some areas,
MkII may still be useful, but for processing XML,
it should really be considered obsolete; MkIV is
now the standard.

In order to process XML with ConTEXt, you need
your XML file (of course), and a ConTEXt style
sheet, which needs to be in a place where Con-
TEXt can find it (the easiest method is to put it
in the same directory as the XML document). It
contains two sorts of instructions:

– setups for every XML element that you want
to process; and

– setups of the layout and look of your doc-
ument, exactly like any “normal” document
preamble would contain.

When we have a file document.xml and a style
file style.tex, you process your files with the
command

context --environment=style document.xml

and you will receive the output in a file docu-
ment.pdf.

5. Presentations in XML
We will now learn how to process XML in Con-
TEXt by looking at a real-world example. I will
describe my own workflow, which I have been
using now for two years in my university. I give
a 90-minute lecture course every week of our
teaching period. I write the text of the lectures in
XML, and I have now decided that my source XML
file should contain both the text that will appear
on the slides and my lecture notes. This has the
advantage that I can reuse these texts with other
applications (e.g., creating a web page for the
class) and that it is easy to produce the slides,

44 44

44 44

presentations in XML > thomas a. schmitz

45

handouts for the students, and the manuscript for
myself from the same source, by using different
style sheets.

For processing the XML file as a presentation,
I use the simpleslides module, which Aditya
Mahajan and I have been developing over the
past three years. This makes it easy to obtain
slides with a visually appealing design, without
having to worry about setups and layout; all the
heavy lifting is done by the module.

6. Thinking about the Structure
As we have seen, we are free to define the el-
ements of our XML file ourselves. What, then,
would be a good structure for our file? It will hold
the presentations for an entire semester. So we
have a root element which we call, unimagina-
tively, “document.”

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE presentation>
<document>

</document>

This root element will have child elements “pre-
sentation” for every lecture. In order to give
every presentation a unique identifier, we add an
attribute “tag” with the date when this particular
presentation will be given. So the structure looks
like this:

<document>

<presentation tag="12_09_21">

</presentation>

<presentation tag="12_09_28">

</presentation>

</document>

Every presentation has some meta-information,
such as a title and the date when it will be de-
livered, that will appear on a title slide. And it
has content: the single slides which make up
the presentation. So the structure of our first
presentation will be:

<document>

<presentation tag="12_09_21">
<title>Example of a presentation

in XML</title>
<author>A. U. Thor</author>
<date>Sep. 21, 2012</date>
<content>
<slide>

</slide>
<slide>

</slide>
</content>

</presentation>

</document>

Every single slide has three parts: a title, some
content which will appear on the slide itself, and
a comment which will not be visible on the slide,
but will be printed in your manuscript for the
lecture. The content of the slides is of course any-
thing you may want to put there. For the purpose
of this tutorial, we will look at a few standard ele-
ments which occur frequently in presentations: a
slide with normal text, a slide with an itemization,
a slide with an image, and finally a slide with a
table. We will later look at these slides one by
one so as not to make the XML example too long
to read. But first, we will delve into the principles
of writing a style sheet for processing these XML
elements.

45 45

45 45

contextgroup > context meeting 2019

46

7. Writing your Style File
Our file style.tex begins with these lines:

\startxmlsetups xml:presentationsetups
\xmlsetsetup{#1}{*}{-}
\xmlsetsetup{#1}{document|

presentation|
title|
author|
date|
content|
slide|
slidetitle|
slidecontent}

{xml:*}
\stopxmlsetups

\xmlregistersetup
{xml:presentationsetups}

We define and “register” a setup for our XML
processing instructions; we call it “presentation-
setups.” As you remember, our file contains both
the text for the slides and our notes, but for the
presentation itself, we only want to process the
elements containing the content of the slides. In
order to be able to do this, we need to define
exactly which elements should be processed.
For this, we first tell ConTEXt that every element
should be dropped; that is what the instruction
\xmlsetsetup{#1}{*}{-} does. After that, we
list all the XML elements that will in fact be
processed. We will later have to add every new
element to this list. As you can see, we add all our
elements to this list except the <slidecomment>
element which should not be typeset for our
slides.

The instruction for the root element <document>
is simple: we just tell ConTEXt to “flush” its con-
tent, i.e., to pass it on to the typesetting engine
for further processing:

\startxmlsetups xml:document
\xmlflush{#1}

\stopxmlsetups

This, then, is the first and most important com-
mand that you have to learn when processing
XML: \xmlflush{#1} means “take the content of
the current XML element and process it.” Pro-
cessing here means: if it contains other XML
elements, those will again have to be defined; if
it contains simple text, this will be typeset.

What about the individual presentations? In our
example, we have our presentations organized by
date, and we want to be able to typeset and show
one single presentation for every lecture. How
can we achieve this? Here is a suggestion: we
take the “tag” attribute and use it as the name of
a ConTEXt mode:

\startxmlsetups xml:presentation
\startmode[\xmlatt{#1}{tag}]
\setupTitle[
title={\xmltext{#1}{title}},
author={\xmltext{#1}{author}},
date={\xmltext{#1}{date}}]

\placeTitle
\xmltext{#1}{content}
\page
\stopmode

\stopxmlsetups

This is the code which will process one single
presentation. We first extract the value of our
“tag” attribute (this is what \xmlatt{#1}{tag}
expands to) and use it to define a ConTEXt
mode; so for our presentation with the attribute
"12_09_21", this will define a mode 12_09_21.
When we tell ConTEXt to use this mode, i.e., when
we run it like this on the command line:

context --environment=style
--mode=11_09_21 document.xml

it will only process the presentation with this
particular tag.

Then, we look at the content of the child
elements of our <presentation> element:
\xmltext{#1}{author} takes the content of the
<title> element, which is then passed onto the
command \setupTitle from the simpleslides

46 46

46 46

presentations in XML > thomas a. schmitz

47

module. The title, author, and date elements are
processed this way; the command \placetitle
creates our title slide. Finally, we simply pass the
<content> element onto the typesetting engine
for further processing.

This is the general structure for our presentation.
Let us now look at the individual slides. The first
slide will only have a title and some text. This is
what the XML would look like:

<slide>
<slidetitle>Our First

Slide</slidetitle>
<slidecontent>
ConTeXt is a document markup
language and document preparation
system based on the TeX
typesetting system. It was
designed with the same
general-purpose aims as LaTeX
of providing an easy to use
interface to the high quality
typesetting engine provided by
TeX. However, while LaTeX
insulates the writer from
typographical details, ConTeXt
takes a complementary approach
by providing structured
interfaces for handling
typography, including extensive
support for colors, backgrounds,
hyperlinks, presentations,
figure-text integration, and
conditional compilation.

</slidecontent>
<slidecomment>
Here are the notes for this slide.
They will not be typeset on the
slide itself, just in our
manuscript for the lecture.

</slidecomment>
</slide>

This is not difficult: we just have to write rules
which will retrieve the content of the “slidetitle”
and “slidecontent” element and pass it to Con-
TEXt:

\startxmlsetups xml:slide
\xmldoiftext{#1}{/slidetitle}{%
\SlideTitle{
\xmltext{#1}{slidetitle}%

}}
\start
\xmltext{#1}{slidecontent}
\par

\stop
\stopxmlsetups

In the first line of this setup command, we test
whether the “slidetitle” element has any content
(not all slides do have titles, after all); if it does,
this content is given to the \SlideTitle com-
mand of the simpleslides module. As you can
see, the content of the slide itself is wrapped
into a \start ... \stop pair so that all font
and size switches within a slide remain local.
The slidecontent itself is then passed on to Con-
TEXt. In the place of our simple text slide, this is
enough; ConTEXt will simply typeset the text.

Next up: a slide with a list of numbered items.
Here is the XML:

<slide>
<slidetitle>Our Second

Slide</slidetitle>
<slidecontent>
<numberedlist>
<item>Our first item</item>
<item>Our second item</item>
<item>Our third item</item>
<item>Our fourth item</item>

</numberedlist>
</slidecontent>
<slidecomment>
More notes.

</slidecomment>
</slide>

47 47

47 47

contextgroup > context meeting 2019

48

In this case, then, we will have to define setups
for two new XML elements, “numberedlist” and
“item” (and remember that you have to add these
names to the list of elements at the top of the
style file). This is pretty straightforward; we just
have to pass them on to a ConTEXt itemization:

\startxmlsetups xml:numberedlist
\startitemize[n]
\xmlflush{#1}

\stopitemize
\stopxmlsetups

\startxmlsetups xml:item
\startitem
\ignorespaces\xmlflush{#1}

\stopitem
\stopxmlsetups

We first define that ConTEXt should “flush” the
content of the element <numberedlist> inside
a \startitemze[n] environment and then each
single <item> inside a \startitem environment.

Our next slide will have an image. Again, the sim-
pleslides module already has code for includ-
ing images and presenting them in an appealing
manner, so we simply have to think of a way of ex-
pressing this in XML and passing the information
on to ConTEXt. Here is what this might look like:

<slide>
<slidecontent>
<includeimage type="vertical"
resource="cow" height="0.4">
Caption (title) for your image

</includeimage>
</slidecontent>
<slidecomment>
More notes.

</slidecomment>
</slide>

Here is the setup for this XML structure:

\startxmlsetups xml:includeimage
\IncludePicture[\xmlatt{#1}{type}]
[\xmlatt{#1}{resource}]
[height=\xmlatt{#1}{height}\textheight]
{\xmlflush{#1}}
\stopxmlsetups

As you may remember, \xmlatt{#1}{type}
means “the value of the attribute type of the
current XML element.” An XML element can
have several attributes, and we can retrieve their
values with this ConTEXt command. And don’t
forget to add the new element <includeimage>
to your list at the beginning of the style file!

Finally, we want a table on one of our slides. Here,
we make use of the new “Extreme Tables” mech-
anism which Hans Hagen introduced in October
2011. To show one way of mapping tables from
XML to TEX, we add some cells which use more
than one row or column. Here is how we express
this in XML:

<slide>
<slidetitle>A table</slidetitle>
<slidecontent>
<table>
<tablerow>
<tablecell>Have</tablecell>
<tablecell>you</tablecell>
<tablecell>ever</tablecell>
<tablecell>seen</tablecell>
</tablerow>
<tablerow>
<tablecell>what</tablecell>
<tablecell nx="2" ny="2">
&CONTEXT;

</tablecell>
<tablecell>can</tablecell>
</tablerow>
<tablerow>
<tablecell>do</tablecell>
<tablecell>for</tablecell>

</tablerow>

48 48

48 48

presentations in XML > thomas a. schmitz

49

<tablerow>
<tablecell>all</tablecell>
<tablecell>of</tablecell>
<tablecell>your</tablecell>
<tablecell>documents?</tablecell>

</tablerow>
</table>
</slidecontent>
<slidecomment>
Even more notes.

</slidecomment>
</slide>

The mapping to ConTEXt commands is pretty sim-
ple in this case:

\startxmlsetups xml:table
\placefigure[here,force]{none}
{\startembeddedxtable
\xmlflush{#1}

\stopembeddedxtable}
\stopxmlsetups

\startxmlsetups xml:tablerow
\startxrow
\xmlflush{#1}

\stopxrow
\stopxmlsetups

\startxmlsetups xml:tablecell
\startxcell[

nx=\xmlattdef{#1}{nx}{1},
ny=\xmlattdef{#1}{ny}{1},
align=middle,
top=\vss,
bottom=\vss]
\xmlflush{#1}

\stopxcell
\stopxmlsetups

Here, you see another way to process XML at-
tributes: \xmlattdef{#1}{nx}{1} means: “the
value of the nx attribute of the current element; if
there is no such attribute, take the default value
‘1.’” Moreover, we have used an XML entity: we
want the logo ConTEXt to be typeset properly, so
we have expressed it in XML as &CONTEXT;. Now
we need to add a definition to our style file

\xmltexentity{CONTEXT}{\CONTEXT}

We are almost there! Our style now needs to
define the look of our document. In this case, this
is fairly easy because the simpleslides module
does all the heavy lifting for us, so all we need is
this:

\usemodule[simpleslides][
style=BigNumber,
font=Helvetica,
size=17pt]

When we process our XML file with this com-
mand:

context --environment=style
--mode=11_09_21 document.xml

we get output which looks like figure 1 on
page 50.

49 49

49 49

contextgroup > context meeting 2019

50

name: myexample

file: myexample

state: unknown

name: myexample

file: myexample

state: unknown

name: myexample

file: myexample

state: unknown

name: myexample

file: myexample

state: unknown

name: myexample

file: myexample

state: unknown

Figure 1. Output of our XML presentation

50 50

50 50

presentations in XML > thomas a. schmitz

51

8. Producing a Manuscript
This, then, is the setup to produce a PDF presentation from our XML file. We will
now look at ways of producing different output from the same file, using different
styles. Our first exercise will be to typeset a manuscript. Here, the result we want to
obtain is the reverse of what we had in the presentation: this time, we only want the
content of the <slidecomment> elements typeset and all the rest dropped. As we
don’t have any special commands in the comment section (yet), all we have to do is
make sure that these elements are typeset. We will insert an eye-catching counter
for our slides so it is easy to know exactly where in your presentation you are at any
given moment. This is fairly easy. Since we have understood the basic principles of
processing XML we can simply look at this second style sheet:

\startxmlsetups xml:manuscriptsetups
\xmlsetsetup{#1}{*}{-}
\xmlsetsetup{#1}{document|

presentation|
content|
slide|
slidecomment}{xml:*}

\stopxmlsetups

\xmlregistersetup{xml:manuscriptsetups}

\startxmlsetups xml:document
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:content
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:presentation
\startsection[
title={\xmltext{#1}{date}: \hfill
\xmltext{#1}{title}},
bookmark={\xmltext{#1}{date}:\xmltext{#1}{title}}]
\xmlflush{#1}

\stopsection
\stopxmlsetups

\startxmlsetups xml:slide
\NewSlide \xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:slidecomment

51 51

51 51

contextgroup > context meeting 2019

52

\xmlflush{#1}\par
\stopxmlsetups

\definecounter [SlideNumber] [way=bytext,prefix=no]

\setuplayout[
marking=off,
width=fit,
height=fit,
header=0.6cm,
footer=0cm]

\setuphead[section][
style=normal,
number=yes,
after={\resetcounter[SlideNumber]},
expansion=yes,
page=yes]

\setuppapersize[A6,landscape][A6,landscape]

\define\NewSlide%
{\incrementcounter[SlideNumber]%
\color[red]{[{\rawcounter[SlideNumber]}]}}

\setupinteraction[
state=start,
title={XML Presentations},
author={A. U. Thor}]

\placebookmarks[section][all]

\setupuserpagenumber[state=start,way=bysection]

\setupheadertexts[{\getmarking[sectionnumber]} – \pagenumber]

Most of what you see here should be pretty obvious by now: we “flush” the parts
we want typeset. In this case, we want one PDF for the entire lecture course, with
every single presentation as a ConTEXt section. These sections will begin on a new
page and have the title element as their respective title. We also put bookmarks
into our PDF so it will be easier to find the single presentations. We have defined
a counter \SlideNumber which is incremented and displayed in red print for every
new slide. The header displays the number of the presentation in our lecture course
and the page number within this presentation. The rest of the code is some more
setups for the visual appearance of the manuscript which is typeset on a landscape
A6 paper; a format that is well adapted for printing on index cards or for reading from
a tablet device.

52 52

52 52

presentations in XML > thomas a. schmitz

53

9. Producing a Handout
I used to put the slides on the web for download-
ing in exactly the form that I showed them in the
classroom, of which figure 1 is an example. But
the students rightly complained that this format
was not suitable for printing. Hence, I defined
a layout which would typeset the contents of
the slides without any colored background and
arranged four slides in a vertical row on the left
side of an A4 sheet, leaving the right-hand side
blank for notes so students could print out the
handouts, bring them to class, and take their
notes next to the slides they were seeing.

Most setups for the elements of the single slides
are exactly like their counterparts for the pre-
sentation setup. Since we’re no longer using
the simpleslides module, I had to copy a few
definitions from the module (e.g., the setups for
placing images), but I will not bore you with these
details. The most important part is the arranging
of the slides, which is achieved with this code:

\setuppapersize[A7,landscape][A4]

\setuppaper[
topspace=3mm,
backspace=1.5mm,
bottomspace=0mm,
dx=0mm,
dy=0mm,
nx=1,
ny=4]

\setuparranging[XY]

This will give the desired arrangements, ideal for
printing.

Conclusion
Setting up a workflow to produce presentations
from XML takes some time, and it took me several
attempts to reach a form which I hope will serve
me in the future. Now that everything is in place,
the advantages of the XML format are evident:
it is convenient to have both the slides and the
lecture notes in one file; this makes reusing the
material easier. The material is now readily avail-
able for other output formats; it would not be
difficult to put the slides on the web via some
xslt transformation. And since there is a clear
separation of content and appearance, I hope this
format should be reusable even if the underlying
mechanisms change (e.g., Aditya has been se-
cretly working on a successor to simpleslides).

53 53

53 53

